Atomic Scale Imaging of Reversible Ring Cyclization in Graphene Nanoconstrictions
نویسندگان
چکیده
منابع مشابه
Direct imaging of atomic-scale ripples in few-layer graphene.
Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct...
متن کاملElectron Interference in Ballistic Graphene Nanoconstrictions.
We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed by in situ transport measurements at various temperatures. The energies of the resonances are determined by...
متن کاملNonequilibrium valley polarization in graphene nanoconstrictions
We recently shown, using tight-binding calculations, that nonequilibrium valley polarization can be realized in graphene, when the current is injected through ”valley filter”: a ballistic point contact with zigzag edges. Here we demonstrate, that the effect is surprisingly robust against changing the crystallographic orientation of the filter axis. Namely, the output current remains polarized u...
متن کاملQuantum dot behavior in graphene nanoconstrictions.
Graphene nanoribbons display an imperfectly understood transport gap. We measure transport through nanoribbon devices of several lengths. In long (>/=250 nm) nanoribbons we observe transport through multiple quantum dots in series, while shorter (</=60 nm) constrictions display behavior characteristic of single and double quantum dots. New measurements indicate that dot size may scale with cons...
متن کاملAtomic-scale transport in epitaxial graphene.
The high carrier mobility of graphene is key to its applications, and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10(5) cm(2) V(-1) s(-1) demonstrated in free-standing graphene films have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Nano
سال: 2019
ISSN: 1936-0851,1936-086X
DOI: 10.1021/acsnano.8b09211